

# Reward and probability: characterizing decision-making in situations with risk.

Madeleine E Sharp<sup>1</sup>, Linda J Lanyon<sup>1,2</sup>, Jayalakshimi Viswanathan<sup>1,2</sup>, Jason JS Barton<sup>1,2,3</sup>



Departments of (1) Medicine, Division of Neurology, (2) Ophthalmology and Visual Sciences, (3) Psychology, University of British Columbia, Vancouver BC

#### Background

How do humans make choices involving reward?
Available tools (Iowa Gambling Task<sup>1</sup>, Balloon Analogue Risk Task<sup>2</sup>) involve an element of learning and do not allow decomposition of decision factors.

#### **Objectives**

- Design a simple test of decision-making under risk to:
- 1. Measure discriminative threshold for value
- 2. Characterize decisional biases

#### Strategy

- Subjects face with two choices ('prospects'), one with larger reward, but the other with greater probability.
- Expected value (EV) = reward X probability
- By varying the relative EV of one prospect vs. the other, we can determine how sensitive a subject is to small differences in EV and if they tend to favour reward size over probability or vice versa.

#### **Prospect theory**

•Subjects decide using *perceived magnitude* and *perceived probability*, which are non-linear functions of objective magnitude and probability.



Concave curve

• Gradual decrease in value of increments. i.e. difference between \$4 and \$5 less than that between \$1 and \$2.

## B. Probability: w(p)

 S-shaped function
 Overweight low probabilities
 Underweight high probabilities



p



#### Experimental Design

20 healthy subjects

•Subjects choose (saccade) between two prospects.

- •4 seconds to decide.
- •\$0.20 per token won

170 trials; 14 combinations of probability and magnitude
Difference in EV between prospects varied from 3-23%
Payment made for accumulated winnings (\$36.40-56.20)
Control tasks: one prospect having both larger reward AND greater probability, or one aspect equal in both prospects.



**Results as function of objective Expected Value** •Discriminative threshold = 10.8% difference in EV •Choice bias: subjects willing to forego 9.4% in EV to choose side with greater probability " **risk premium**"

References: 1. Bechara et al. Cognition (1994) vol. 50 (1-3) pp. 7-15, 2. Lejuez et al. J Exp Psychol Appl (2002) vol. 8 (2) pp. 75-84, 3. Savage, L. (1954). The foundation of statistics. New York: John Wiley. 4. Hsu et al. (2009) vol. 29 (7) pp. 2231, 5. Kahreman and Tversky-Econometrica (1979) vol. 47 (2) pp. 283-292



### Results in prospect theory terms

•Calculate perceived value (V(x/p) from parameters from an independent study of healthy subjects  $^4$ .

Curve now passes close to '0' difference between prospects
Prospect Theory explains the risk premium: the outcome of non-linearities in subjective perception of reward magnitude and probability

#### Conclusions

• simple test of decision-making under risk, devoid of learning, with robust measures of sensitivity and bias

• Mean discriminative threshold for expected value is 10.8%.

• A systematic 9.4% decisional bias indicating risk aversion, explained by prospect theory.

•could be used to study decision-making in clinical populations

