Reward and probability: characterizing decision-making in situations with risk.
Madeleine E Sharp ${ }^{1}$, Linda J Lanyon ${ }^{1,2}$, Jayalakshimi Viswanathan ${ }^{1,2}$, Jason JS Barton ${ }^{1,2,3}$
Departments of (1) Medicine, Division of Neurology, (2) Ophthalmology and Visual Sciences, (3) Psychology, University of British Columbia, Vancouver BC

Background

-How do humans make choices involving reward? -Available tools (lowa Gambling Task ${ }^{1}$, Balloon Analogue Risk Task ${ }^{2}$) involve an element of learning and do not allow decomposition of decision factors.

Objectives

Design a simple test of decision-making under risk to:

1. Measure discriminative threshold for value
2. Characterize decisional biases

Strategy

- Subjects face with two choices ('prospects'), one with larger reward, but the other with greater probability.
- Expected value (EV) = reward X probability
- By varying the relative EV of one prospect vs. the other we can determine how sensitive a subject is to small differences in EV and if they tend to favour reward size over probability or vice versa

Experimental Design
-20 healthy subjects
-Subjects choose (saccade) between two prospects.
$\cdot 4$ seconds to decide.

- $\$ 0.20$ per token won
- 170 trials; 14 combinations of probability and magnitude -Difference in EV between prospects varied from 3-23\% - Payment made for accumulated winnings (\$36.40-56.20) -Control tasks: one prospect having both larger reward AND greater probability, or one aspect equal in both prospects.

Results as function of objective Expected Value

-Discriminative threshold $=10.8 \%$ difference in EV
-Choice bias: subjects willing to forego 9.4% in EV to choose side with greater probability " risk premium"

Results in prospect theory terms
-Calculate perceived value ($\mathrm{V}(\mathrm{x} / \mathrm{p}$) from parameters from an independent study of healthy subjects ${ }^{4}$
-Curve now passes close to ' 0 ' difference between prospects - Prospect Theory explains the risk premium: the outcome of non-linearities in subjective perception of reward magnitude and probability

Conclusions

- simple test of decision-making under risk, devoid of learning, with robust measures of sensitivity and bias
- Mean discriminative threshold for expected value is 10.8%. - A systematic 9.4% decisional bias indicating risk aversion, explained by prospect theory.
-could be used to study decision-making in clinical populations

